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ABSTRACT 

 

Precise Indoor Localization is a major component of numerous location based 

applications and services which perform indoor guidance and object tracking. There are many 

existing solutions which address the localization issue, but most of them do not provide a fault 

tolerant solution. In this work, we have developed a fault tolerant statistical method which 

leverages the existing infrastructure by using the readily available Wi-Fi Access Points. Our 

proposed method can be applied to any environment which has a Wi-Fi coverage and we do 

not assume the knowledge of the placement of the Access Points or any physical layout. 

Initially we map the signal strengths and the corresponding positions to obtain the RF 

distribution of the region and this is the offline phase. We develop different fault tolerant 

models and use an Android application for monitoring various Access Points to provide the 

status of the Access Points in the environment. During the online phase, we measure the signal 

strength at distributed locations in the environment and then, depending on the status obtained 

from the application, we use the appropriate scheme to obtain the corresponding locations. In 

specific we use a Maximum Likelihood Estimator to obtain the position from the previously 

recorded RF map. Further, we provide 95% confidence intervals for the location obtained by 

using a Bootstrap method. Our method, compared to other deterministic methods is more 

accurate and fault tolerant. We also provide the experimental results which validate the 

accuracy of our method in obtaining the user location.
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CHAPTER 1. INTRODUCTION 

 

  Indoor Localization has gained popularity as a critical enabler for location based 

applications in the recent times. Location based information is necessary in many environments 

such as airport terminals and malls to provide the user navigation and promotion information. 

It also helps improve the business by studying the number of users visiting a particular store 

and study the rate of flow of passengers to obtain statistical information of the number of 

passengers flying through a particular city during a period. Moreover Indoor localization 

systems can also be used in automatic object location systems to detect objects in a warehouse 

or personnel in a huge location. The wide range of smart devices which have access to Wi-Fi 

and 4G LTE have triggered the development of these systems. For example, if you go to a 

mall, your smart phone could detect the location and then could automatically suggest you the 

restaurants nearby and also could fetch coupons for the stores. This seemingly easy mechanism 

involves location detection, indoor localization and also interaction with the database of the 

store to fetch valid coupons. This example portrays the gravity of Indoor Localization which 

is the problem we have addressed in this work. 

Indoor Localization cannot rely on GPS since GPS doesn’t work indoors. Hence an 

alternative means has to be pursued to achieve localization indoors. Various techniques using 

RFID, Ultrasound, IR and Bluetooth have been proposed. However all these techniques require 

additional infrastructure which poses a significant overhead. The recent commercial offerings 

such as Google Maps and ShopKick which help a user to position himself indoors have errors 

more than 5 meters or are only functional at the location of the stores. SkyHook offers an SDK 

which could be used to develop location based applications using the information of various 
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Wi-Fi APs it collects using wardriving. But, as their website mentions, the location obtained 

using their SDK is accurate only up to 10 meters. 

In this work, we have addressed the problem of Indoor Localization by making use of the 

beacons emitted by the Wi-Fi Access Points (APs) and measuring their signal strength. A 

regression module was used to fit the records of Received Signal Strength (RSS) to the location 

to obtain signal strength distribution in the offline stage. The online stage consists of measuring 

the signal strength(s) at a particular location and using the previous signal strength distributions 

to obtain the position. Also, we have calculated the confidence intervals of the location 

estimated. And a fault tolerant module has been incorporated which caters to the various faults 

occurring in the Wi-Fi environment and thus can deal with the dynamic changes. By using our 

proposed method, the mean localization error was restricted to 2 meters. 

 

1.1  Related work 

 

There have been a plethora of papers in the past which have discussed different 

strategies in order to achieve indoor positioning effectively. The most popular work is 

RADAR[1]  based on Wi-Fi technology. The authors have used two stages which they called 

off-line phase and real-time phase. In the offline-phase the average signal strength from the 

mobile clients are measured to build radio map recording locations, signal strengths and users’ 

directions. During the next stage the readings were analyzed using the layout of the building 

plan and a line clipping algorithm. The nearest neighbor in signal space search methodology 

was used to compare multiple locations and pick the best one that matches the observed signal 

strength. The accuracy using the first method was found to be 2.94m. However this method 
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doesn’t include any mechanism which takes into account the dynamic changes in the 

environment. 

Another popular work is Horus[4] which chooses the estimated location from the 

discrete set of radio map locations. Similar to RADAR, Horus also uses two phases namely 

online and offline. The offline phase employs a probabilistic method, the Bayes’ theorem. It 

handles the correlation between different samples from the same access point and uses a 

perturbation technique to deal with small variations in the signal strength. Horus also uses a 

time average window to obtain continuous location estimation. The authors were able to 

achieve an accuracy of 2m. However, this technique is complicated as it has a large number of 

modules. 

LANDMARC[6] is another Indoor localization technique using active RFID. The basic 

idea is to use expensive RFID readers at fixed positions and also inexpensive RFID tags as 

landmarks which can record the dynamic changes due to the movement of objects/people in 

the environment. An analysis of power level vs distance is carried out prior to deployment. The 

mechanism works by calculating the Euclidean distance between a reference tag and the tag to 

be tracked and employing k-nearest neighbor algorithm. It has an accuracy of 2m. But, the use 

of extra infrastructure poses a significant overhead. 

The authors have eliminated the pre deployment effort completely in the paper Indoor 

Localization Without Pain[3]. They do not assume the physical layout and also positioning of 

the Access Points. The method makes use of Wi-Fi enabled devices carried by users for 

crowdsourcing. In addition, a GPS lock would be obtained at an entrance to extract a location 

fix and this information is relayed to EZ server. A propagation model has been used to 
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represent the system. Since a propagation model is used, this scheme does not accommodate 

changes in the environment. 

1.2 Fault Tolerance 

 

Most of the previous works on Indoor localization have focused on improving the 

accuracy which is our primary goal. The secondary goal of our work is to make our method 

fault tolerant i.e., we must be able to localize even in the case of faults. We intend to make the 

system fail safe i.e., it continues to function even in the case of faults instead of failing 

completely. We also obtain a threshold of the number of faults which if exceeded would make 

the system degrade gracefully. If the number of faults is below this threshold, then the faults 

are masked. We use the terms faults and failures synonymously in the following sections. 

We have followed the traditional fault tolerance procedure consisting of fault 

confinement, fault detection and fault masking steps. We assume that the faults/failures 

occurring at the Access Points are independent of each other which confines the faults. We do 

not consider instances such as power failures which affect all the APs at once. This helps 

confine the faults and also makes them independent of each other. 

Fault detection has been achieved by means of deploying Wi-Fi enabled devices at 

different locations in such a way that the status of all APs is monitored. Fault masking could 

be achieved by means of altering the number of APs used in the Maximum Likelihood 

Estimator module. In other words, the failed APs would not be used during the analysis during 

the online stage. Though this would lead to an increase in the localization error, our method 

makes sure that the error is below a threshold. 

Though the works have addressed key factors which determine the Localization 

process, most of them do not have an upper bound on the localization error. Moreover, almost 
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all of them do not consider the case of AP failures/shutdown which is a common issue if public 

WLANS are being used. The most important differences between our model and the previous 

models are as follows. 

 The need to study the complex theory of signal propagations has been eliminated. 

 No prior information of the physical layout or distribution of the APs is necessary. 

 A module that takes care of the faults occurring the environment has been incorporated. 

 Confidence intervals which provide a range of the position along with the estimated 

position facilitate a means to calculate the maximum error in the estimation. 
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CHAPTER 2. OUR SCHEME 

 

2.1 System Model and Assumptions 

 

We deploy a Client-Server model in which the server is responsible for processing the 

RSS records and delivering the results to the clients. Clients are the Wi-Fi enabled user devices 

and form the interface through which the users interact with the server to obtain the coordinates 

of the current position. They perform the function of recording the Received Signal Strength 

(RSS) of different APs at the user location. The RSS records are then pushed to the database 

in the server which employs various methods to accurately calculate the position of the user. 

We introduce various terms and the associated assumptions before we describe our 

scheme. A fingerprint is defined as the RSS (in dBm) along with the coordinates of the location 

at which the RSS is measured. For instance (-88, (2, 3)) represents an RSS record of value -

88dBm at the location (2, 3). Here, (2, 3) represents a location which is 2m to the right and 3m 

above the reference point. The RF map is the collection of fingerprints at various locations. 

We construct RF maps for each of the APs discovered. The measurements are taken in the 2D 

region under consideration and this area is termed as Region of Consideration (ROC).Hence 

our method is limited to the 2D space and all the models described further are based on it. We 

define localization error as the Euclidean distance between the original location and the 

estimated location. Our scheme relies on two basic assumptions 

 Full coverage is provided in the entire ROC by at least three APs at all times. 

 The smart devices used by the people are Wi-Fi enabled. 

We divide our scheme into an offline phase and an online phase. The offline phase 

comprises of data collection and data processing. The ROC is determined during this phase 
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and a convenient point of reference is fixed. The signal strength is then obtained all over the 

ROC as a function of the distance from the reference to form the RF map of the region. Once 

the map is obtained, the next step is to find the minimum number of locations in ROC such 

that each AP’s range would contain at least one location. In other words, the union of the set 

of the fingerprints at these locations would have the beacons from all the APs in the ROC. 

These locations are then utilized for continuous monitoring of the status of the APs. Since the 

ROC usually consists of some locations like offices, the smart devices/systems in the offices 

can be used to monitor the access points. An android application has been designed which 

sends regular updates of the APs and acts as a monitor for the environmental changes. 

 

 

 

 

 

 

 

 

Fig. 1.1   Proposed scheme with Offline and Online phases 

 

The online phase is completely client based and is responsible for reporting the location 

to the user. It consists of a location processing, fault tolerant and bootstrapping module. The 

user with a Wi-Fi enabled device measures the RSS at a location of interest and this data gets 

pushed to the database of the server. The fault tolerant module then submits the status of the 

various APs to the server and the data is then processed at the server. It requires the server to 

Data Collection 

Data Processing 

 

Location processing Bootstrapping module 

Fault Tolerant Module 



www.manaraa.com

8 

 

 

choose the method relevant to the status received and the location obtained is sent to the client. 

Also 95% confidence intervals are calculated for each location datum pushed to the server. 

 

2.2 Offline Phase 

 

2.2.1   Data Collection Module 

 

 This is the key step in our scheme which builds the RF map. Though it requires significant 

effort, once an RF map is obtained for an ROC, it can be used to localize any number of users. 

Another implication of this step is to obtain the “Monitor Points”, which are the locations to 

monitor the status of the APs. Initially, the ROC is decided upon and is equipartitioned into 

smaller regions. The RSS is then recorded at each of the smaller regions to give rise to a 

complete RF map. The RF map would be used in the data processing module to obtain a surface 

to be used in the online surface to infer the location corresponding to the fingerprints recorded. 

Also, it is handed over to the fault tolerant module. Thus this step is basically used to construct 

a training set which would be useful to obtain the signal strength distributions over the ROC. 

2.2.2   Data Processing Module 

 

 Data obtained from the collection module is fitted to surfaces to obtain signal strength 

distribution which could then be made use of in the online phase to find location corresponding 

to the RSS measured. A surface fitting module fits the RSS readings corresponding to each AP 

obtained to the position so that a function of RSS with respect to the position is obtained. 

The LOESS method is used to fit the surfaces which is a non parametric method for estimating 

regression surfaces. LOESS is used to find a regression function gi for each point in the set of 

points {x1,y1},{x2,y2},{x3,y3}…{xn ,yn} such that 



www.manaraa.com

9 

 

 

                                                          𝑦𝑖 = 𝑔(𝑥𝑖) + ∈𝑖                                                          (2.1) 

Where ∈ is the regression error. 

If there are k fingerprints, the LOESS model on the training set can be expressed as in (1). 

                                                               𝑠𝑗 = 𝑔(𝑥𝑗 , 𝑦𝑗) +∈𝑗                                                   (2.2) 

In (1), s is the signal strength distribution, g is the regression function, (xj¸yj) are the 

coordinates of the location and ∈𝑗 is the regression error. The degree of the polynomial g is a 

predefined parameter and in our case it is 2 since we use the quadratic model. 

                  𝑔(𝑥𝑗 , 𝑦𝑗) =  𝛽𝑖,0 + 𝛽𝑖,1𝑥 + 𝛽𝑖,2𝑥2 + 𝛽𝑖,3𝑦 + 𝛽𝑖,4𝑦2 + 𝛽𝑖,5𝑥𝑦                              (2.3) 

L is the smoothing matrix which defines the linear relationship between fitted and observed 

dependent variable value. 

𝑅 = 𝐿𝑅 

Where 𝑅 denotes the fitted RSS and R is the observed RSS. 

LOESS fits each of the training points using the local points which is specified by the parameter 

k. k is given by 

                                                                  𝑘 = 𝑛𝑞                                                              (2.4) 

where q is the smoothing parameter and n denotes size of the training set. It employs a tricube 

function to determine the weights for a point at (xj,yj). If d represents the maximum distance 

between (xi,yi) and (xj,yj) where (xj,yj) lies in the local neighborhood defined by k, then weight 

of (xj,yj) is given by 

                                                 𝑤(𝑥𝑗 , 𝑦𝑗) = (1 −
(|(𝑥𝑗,𝑦𝑗)−(𝑥𝑖,𝑦𝑖)|)

3

𝑑3 )3                                  (2.5) 

Using this equation and the quadratic equation of s, it minimizes the following quantity 

       𝑄 = ∑ 𝑤(𝑥𝑗 , 𝑦𝑗)(𝑠𝑗 − ( 𝛽𝑖,0 + 𝛽𝑖,1𝑥 + 𝛽𝑖,2𝑥2 + 𝛽𝑖,3𝑦 + 𝛽𝑖,4𝑦2 + 𝛽𝑖,5𝑥𝑦))2               (2.6) 

Hence LOESS needs to estimate {𝛽𝑖,0, 𝛽𝑖,1, 𝛽𝑖,2, 𝛽𝑖,3, 𝛽𝑖,4, 𝛽𝑖,5}. 
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An important assumption we make is that the regression error satisfies some normal 

distribution which leads to the conclusion that the signal strength s also is normally distributed. 

                                                                ∈ = 𝑁(0, 𝜎2)                                                        (2.7) 

                                                                𝑠 = 𝑁(𝑔, 𝜎2)                                                        (2.8) 

Where 𝜎2 is the variance. 

Weighted least squares method is used to fit quadratic functions of the locations at the centers 

of the neighborhood. A smoothing parameter called span which represents the percentage of 

data points in each neighborhood controls the smoothness of the estimated surface. We make 

use of AIC[12] to obtain an appropriate span for the surface fit. AIC provides a measure of 

relative quality of a model for a given dataset. Three variations of the minimization criteria 

namely AICC1,AICC and GCV are available for this purpose. We have used AICC in our case. 

The LOESS procedure evaluates the criteria for a sequence of smoothing parameter values and 

selects the value in the sequence which satisfies the criteria using an optim function in R. 

 

                                    𝐴𝐼𝐶𝐶1 = 𝑛𝑙𝑜𝑔(𝜎2) + 𝑛 
𝛿1/𝛿2(𝑛+𝑣)

𝛿1
2

𝛿2
−2

                                                      (2.9) 

                                      𝐴𝐼𝐶𝐶 = 𝑙𝑜𝑔(𝜎2) + 1 +
2(𝑇𝑟𝑎𝑐𝑒(𝐿)+1)

𝑛−𝑇𝑟𝑎𝑐𝑒(𝐿)−2
                                                (2.10) 

                                         𝐺𝐶𝑉 =
𝑛𝜎2

(𝑛−𝑇𝑟𝑎𝑐𝑒(𝐿))2
                                                                           (2.11) 

 

Where n is the number of points 

                                              𝛿1 = 𝑇𝑟𝑎𝑐𝑒(1 − 𝐿)𝑇(1 − 𝐿)                                               (2.12) 

                                                   𝛿2 = 𝑇𝑟𝑎𝑐𝑒((1 − 𝐿)𝑇(1 − 𝐿))2                                           (2.13) 

                                                    𝑣 = 𝑇𝑟𝑎𝑐𝑒(𝐿)                                                                (2.14) 
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Where L is the smoothing matrix and 𝜎2 is an average residual sum of squares. 

From the collection module, an RF map with k APs and n locations is obtained. The regression 

is applied to each fingerprint to obtain k regression surfaces corresponding to k APs. Thus the 

normal distributions corresponding to k APs are stored in the server to be used during the 

online phase. 

 

2.3 Online Phase 

 

2.3.1   Location Processing Module 

 

 This module takes the RSS readings of various APs as measured by the user devices and 

outputs the corresponding location estimate. A maximum likelihood estimator is deployed 

which works as follows. A likelihood function is a function of the parameters of the model and 

maximum likelihood estimation provides an unbiased minimum variance estimation where the 

estimates are normally distributed. Since log of a likelihood function is also an increasing 

function we use the log function in the parameter estimation. 

 The log likelihood function for the set of signal strength received from all APs at a 

location is given by(2) where ∅  denotes the standard normal density function, sj is the 

distribution of jth AP obtained using the LOESS module and σj is the corresponding standard 

deviation. We use optimization as a method for maximizing this log likelihood function 𝑙(𝑥, 𝑦) 

which gives the position of a set of RSS readings. 

                                               𝑙(𝑥, 𝑦) =  ∑log (∅ (
𝑠𝑗−𝑔𝑗(𝑥,𝑦)

𝜎𝑗
))                                          (2.15) 

 The above function when maximized gives the parameters, in our case the coordinates of 

the location. 
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For maximising the loglikelihood function, we have made use of SANN optimization which 

provides a global maximum. 

2.3.2   Bootstrapping Module 

 

 The basic idea of bootstrapping[17] is to produce a large number of copies of the sample 

statistic and then obtain the sampling distribution of the surrogate population to study the 

behavior of the statistic over a large number of samples called bootstrap samples using a small 

population at hand. In our scheme we have used Bootstrapping to study the sampling 

distribution of the MLE estimator. Firstly, we resample the signal strength distribution 

obtained by regression fitting to obtain a large number, usually 2000 samples. These samples 

are then given as input to the MLE module which gives the position estimate corresponding to 

these samples. Then, a small percentage usually 2.5% is trimmed off from the lower as well as 

upper end of this range. The range of remaining 95% values is declared as the confidence limits 

of the corresponding population with level of confidence 95%. 

2.3.3   Fault Tolerant Module 

 

 This is the critical part of the system which focuses primarily on providing fault tolerance 

in real world environments where the APs could fail or exhibit erroneous behavior. We 

introduce different fault models which capture such behavior and evaluate the way our 

proposed scheme functions in each case. The basic idea is obtained from [14]. An important 

assumption we make is that the faults occur after the offline phase which causes a discrepancy 

between the environment during the offline phase and that during the online phase. In order to 

deal with the various faults we propose the following technique. After the data collection 

phase, we run through the RF map and find locations in the map, usually offices in a 
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mall/terminal which can accommodate a system/mobile device to act as a monitor. If a 

particular location is denoted by (xi,yi) and the corresponding RSS beacons received from jth 

APs as sij.{si} denotes the set of beacons received from all APs at the location i. We need to 

find the least number of locations n such that {𝑠1} ∪ {𝑠2} ∪ {𝑠3} … ∪ {𝑠𝑛} gives the complete 

set of APs in the ROC. These locations would be called as Monitors. We then deploy a mobile 

application in the smart devices of the people at these locations which provides the status of 

the all access points in the ROC. The Android application scans for the beacons emitted by the 

APs every 10 seconds and sends the beacon data received to a central server at regular intervals. 

The database of the central server reflects the status of the various APs in the ROC. An 

important assumption that we make is that none of the faults occur at the Monitors. We describe 

the models next and the proposed mechanism to deal with each model. 

2.3.3.1   AP failure model 

 

 The model corresponds to the case where the APs used in the offline phase are not 

available during the online phase. Possible reasons might be power outages, system 

maintenance or permanent shut down of the AP. In this case the RF map created in the offline 

phase doesn’t provide accurate results. If there are no beacons corresponding to a particular 

AP for a considerable amount of time, say for one hour, we assume that the AP has failed and 

modify the MLE to reflect the changes corresponding to the failed AP. So we use the signal 

strength distributions obtained from the regression module corresponding to the APs which are 

functioning at that point as one of the inputs to the Estimator. The other input would be the 

readings of the APs recorded by the users at his/her location. This method might reduce the 

accuracy if the number of APs falls below a threshold. 
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2.3.3.2 False Negative Model 

 

Another scenario is when the beacons from the AP are not detected during the online 

phase even if the APs are functioning. This might be due to the movement of any 

structure/furniture such that it obstructs the signals from the AP. We go with our initial 

assumption that no faults occur at the monitors and hence they reflect the true status of the 

environment, i.e., in this case the beacons would be received at the monitors and would indicate 

the true state of the APs. So even if a reading at a location doesn’t contain a record 

corresponding to a particular AP, we give the same set as an input to the estimator. This might 

affect the accuracy of localization though. 

2.3.3.3 False Positive Model 

 

In this model, the beacons from the APs not received during the offline phase would 

be detected. This might be due to a change in the configuration of the coverage by adding new 

APs. In this case the beacons received from the APs that are not a part of the offline phase 

signals, are not used for localization. This is because, the training dataset doesn’t contain the 

fingerprints corresponding to the APs newly discovered which implies that they are not a part 

of the initial set of APs. 
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CHAPTER 3. EXPERIMENTAL ANALYSIS 

 

Our experimental test bed is located in the basement of the Howe hall of Iowa State 

University. We have used a region which measured 12m by 10m as our ROC divided into 

square regions of dimensions 1m by 1m. The ROC has been colored black in Fig. 1.We have 

used a free space to build the map initially and then have moved furniture into the area during 

the online phase to study the effect of reflections due to various objects in the environment. A 

Lenovo Thinkpad T440S model laptop running Windows 8 equipped with AirPcap Classic 

adapter has been our capture hardware. Wireshark has been used in conjunction with AirPcap 

adapter to capture the beacons along with the associated RSS. An android application which 

can be run on any Android device has been developed which scans for the Wi-Fi beacons every 

10 seconds and then pushes it to a server. A WAMP server has been used for this purpose 

which runs on a Lenovo laptop. The entire statistical programming has been done using R 

Studio. The Android SDK was used for developing the Android application [18]. 

 

3.1 Offline phase 

 

In this phase, we collect the beacon information at 1m intervals spanning the entire 

ROC. We limit our Localization process to 2.4GHz band. The AirPcap adapter makes available 

the RSS of the beacons received in units of dBm. Power in mW can be converted to dBm using 

the conversion formula 10*log10(mW).  Next, we obtain the fingerprints of the entire ROC in 

the format (dBm,(x,y)) with the person standing in front of the laptop. The collection process 

is carried out with no change in the person’s orientation over the ROC.  

The process is repeated for the APs in the three channels namely 1,6 and 11 

corresponding to 2412 GHz,2437 GHz and 2462 GHz bandwidths. At each location we capture 
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5000 beacons and average the RSS to obtain a mean RSS. We use the mean RSS for the rest 

of the sections. So at the end of the data collection stage we have RF maps corresponding to 

each AP.  

The next step is then carried out to determine the positions of the monitors. The RF 

maps are then studied to obtain the locations for deploying the monitors which might be the 

offices of employees with their mobiles running the android application to regularly monitor 

the status of the APs. In our case we have the application running at the position colored red 

indicated in the map in Fig. 3.1. 

 

 

Fig. 3.1  Floor plan of the Howe Hall Basement 

 

We then use the data processing module to fit the fingerprints to a surface, so that we 

have signal strength distribution in the ROC for each AP. This gives us n surfaces 

corresponding to n APs. The LOESS regression module has been used to fit the readings to the 

positions to obtain the curve with the span obtained by minimizing the error by using the 

AIC[12]. 
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3.2 Online phase 

 

We have users moving at random in the ROC and measuring the RSS using the Wi-Fi 

enabled device. This is then pushed to the WAMP server. The RSS readings are then provided 

as an input to the location processing module. In our case, the server can calculate the position 

of one user at any given time. The reading would be in the form of (SSID, BSSID, RSS, 

Frequency, Timestamp). The BSSID would give the details of the AP address and the RSS is 

the signal strength in dBm. At each location 100 samples are collected and then the mean of 

the readings is taken. The set of readings in the form of (BSSID, Mean RSS) are fed to the 

Estimator which uses the previously calculated Signal Strength distributions to perform 

Maximum Likelihood Estimation. Also provided to the server is the status from the Monitors 

which is essential to provide fault tolerant solution to the localization problem. 

 

Fig. 3.2  Screenshot of the MySQL database 
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Fig. 3.3  Screenshot of the Android application 

 

3.2.1   Temporal Analysis 

 

In this case we have selected random locations in the ROC and measured the RSS at 

these locations during three different times. The first set of readings (T1) was taken during the 

offline phase along with the training data. The second set of readings (T2) was taken after 

arranging furniture in the test bed past midnight when the number of people in the ROC is the 

minimum. The third set of readings (T3), was taken during a busy time, 10 minutes prior to the 

beginning of the class. From Fig. 3.4, we see that the though there is some variation in the 

results obtained from different sets, the variation is not very significant. Fig. 3.5 shows the 

mean localization error for the three cases. Thus we can conclude that the method is temporally 

robust as long as the APs function.  
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Fig. 3.4  Localization error at different positions in the ROC during three different times 

 

 

Fig. 3.5  Mean Localization error of temporally distributed samples  

 

3.2.2   Effect of the number of APs 

 

We have obtained the fingerprints all over the ROC and it was observed that there were 

8 APs which are responsible for providing Wi-Fi coverage. Our objective in this case was to 

obtain the minimum number of APs which are needed to maintain the localization error up to 

a certain threshold. We fixed the threshold to be 2m, hence we find the minimum number of 
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APs needed to participate in the localization process in order to restrict the localization error 

to 2m. From the results interpreted in Fig. 3.6, we observe that the mean localization error 

depends on the number of APs. It sharply reduces from 3.74m to 1.52m when the number of 

APs increases from 2 to 3 but thereafter, a significant change has not been observed. However 

another acute change occurs when all the 8 APs are employed thereby reducing the mean error 

to 1.38m. Hence in our ROC we find that the minimum number of APs required to limit the 

mean localization error to 2 m is 3. 

 

Fig. 3.6  Relation between the number of APs and the Mean Localization error 

 

3.2.3   Location determination along a path 

 

We select a path which spans the entire ROC to observe the distribution of localization 

error over the path. A total of 16 locations were selected in such a way that the new set and the 

original training set are mutually exclusive. From Fig. 3.7, we observe that the error at the 

edges of the ROC is very high when compared to that at other points. This can be explained 

since the regression uses the neighborhood to obtain the surface plot and the number of 

neighborhood locations at the edges is low. 
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Fig. 3.7  Localization error along a path with 8APs 

 

3.2.4    Failure of an AP 

 

This case uses the same path which has been established in the previous case. To 

simulate the situation of 1 AP failure, we choose an AP and substitute the readings 

corresponding to it across all the positions along the path with zeros. We then give this set of 

readings as input to the estimator. This procedure is then repeated for the rest of the APs i.e., 

we assume that each AP fails once and then construct of training sets and use them to obtain 

the position. Then the mean localization error is obtained at each position. As discussed earlier, 

if there were a failure it would be detected by the Monitor and the estimator would be notified 

about it. In our case, to simulate this fault tolerant behavior, we drop the fingerprints 

corresponding to the failed AP and hence prevent the inclusion of this AP in further estimation. 

Fig. 3.8 represents the results corresponding to the fault tolerant and non fault tolerant cases. 

We observe that there is a commendable difference between the performance of our 

localization scheme with and without fault tolerance. Some outliers however have been 

observed. 
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Fig. 3.8  Localization error in the case of an AP failure 

 

 

Fig. 3.9  Comparison of localization error with 8 APs and 7 APs 

 

3.2.5   Failure of two APs 

 

In this case, we use six APs for localization in the fault tolerant case and substitute the 

readings of the other two APs with zeros. Since we obtain a large number of sets consisting of 

two APs, we select the 4 APs, 2 with maximum coverage and 2 with minimum coverage. We 

then take all possible combinations of these 4 APs which gives 6 sets of training data. We use 
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these sets to obtain the locations of the points as explained before and plot the mean localization 

error at each location. The difference in the error between the two cases is quite significant 

than the previous case. Thus it could be inferred that as long as a single fault at AP occurs, it 

is masked and any number of faults higher than 1 would increase the localization error.  

However the system would degrade gracefully as depicted in the graph below. Since our model 

assumes that faults don’t occur at the monitors, it can detect the situations of AP failure. If the 

beacon from a particular AP is not recorded at a particular location, the database is checked to 

see if the AP is alive, if it is then it is assumed as a false negative and the original training set 

is used. Else, the training set excluding the failed AP is used to process the location. 

 

Fig. 3.10  Localization error in the case of two AP failures 

 

Fig. 3.11  Comparision of localization error with 8APs and 6 APs 
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3.2.6   Different hardware 

 

 We have verified the validity of our method on different devices by comparing the 

Localization error along a path in the ROC when the online phase was carried out using an 

HTC One X+ running on Android Version 4.2.2 and a Lenovo laptop running on Windows 8 

version. Fig. 3.12 shows a comparison of means of errors when the online phase readings were 

recorded using the previously mentioned hardware devices. 

 

Fig. 3.12  Mean Localization error with an Android device and a laptop 

 

3.2.7   Bootstrap Analysis 

 

In order to obtain the 95% confidence intervals for the location estimates, we resample 

the signal distributions obtained by regression to obtain 2000 samples. These samples form the 

new training set and are used to find the position of each set of readings collected during the 

online phase. Thus for each location readings, we have 2000 location estimates. The next step 

is to find the 2.5% and 97.5% quantiles which give the lower and upper bounds for the 95% 

confidence intervals. We have repeated the process for 7 locations in the ROC and the results 

have been presented in Table 3.1. 
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TABLE 3.1  CONFIDENCE INTERVALS 

 

Original 

Location in 

(m,m) 

Location estimate 

in 

(m,m) 

Lower bound 

(m,m) in 

Upper bound 

(m,m) in 

(4,7) (3.456226,7.08) (1.21,5.297) (2.545,7.68) 

(5,7) (6.37,10) (4.962,8) (6.475,8) 

(6,7) (4.405,8) (3.892,8) (7.32,6.417) 

(7,7) (6.44,7.05) (5.683,6.14) (8.66,7.78) 

(9,7) (8.77,6.836) (6.784,6.644) (8.66.7.78) 

(10,7) (8.01,8) (4.876,8) (8.9,4.99) 

(11,7) (11,8) (11,6.494) (11,8) 
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CHAPTER 4. CONCLUSION 

 

We have achieved a fault tolerant solution in the case where the faults which occur are 

limited to AP failures and reception of false negatives and false positives. We intend to address 

the case where there is relocation of one or more AP(s). Can the monitors detect the relocated 

APs? If yes, can a relevant fault tolerant solution be provided? Also, we would like to extend 

our work to the 3D space which would be more relevant to the multi floored indoor spaces. 

Another issue to be considered is to come up with a method which eliminates the errors at the 

edges of the ROC due to limited neighborhood. A basic idea to address this issue would be to 

take help of GPS as the edges usually consist of windows/exits and then use this in conjunction 

with our localization scheme. 

In this work, we have discussed a scheme to localize a user indoors without the need 

of a physical layout or information regarding placement of the APs. Further, a procedure to 

deal with various fault models has been discussed. We have successfully localized a user in 

the ROC within 2m of the actual position in spite of the dynamic environment. A proof of the 

localization error along a path spanning the ROC also has been provided.  Also, we have shown 

that the minimum number of APs needed to have the localization error less than 2 m as 3. Thus 

we have provided a fault tolerant solution to the Indoor Localization problem which is a 

significant contribution to the research going on in this area. 
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APPENDIX A 

R CODE 

 

PARAMETER CALCULATION SATISFYING AKAIKE’S INFORMATION CRITERION 

#x is the loess object 

loess.aic<-function(x){ 

  span<-x$pars$span 

  n<-x$n 

  traceL <- x$trace.hat 

  sigma2 <- sum( x$residuals^2 ) / (n-1) 

  delta1 <- x$one.delta 

  delta2 <- x$two.delta 

  enp <- x$enp 

  aicc <- log(sigma2) + 1 + 2* (2*(traceL+1)) / (n-traceL-2) 

  aicc1<- n*log(sigma2) + n* ( (delta1/delta2)*(n+enp)/(delta1^2/delta2)-2 ) 

  gcv  <- n*sigma2 / (n-traceL)^2 

  result <- list(span=span, aicc=aicc, aicc1=aicc1, gcv=gcv) 

  return(result) 

  } 

bestLoess <- function(model, criterion=c("aicc", "aicc1", "gcv"), spans=c(0.05,0.95)){ 

  criterion <- match.arg(criterion) 

  f <- function(span) { 

  mod <- update(model, span=span) 

  loess.aic(mod)[[criterion]] 
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  } 

  result <- optimize(f, spans) 

  list(span=result$minimum, criterion=result$objective) 

  } 

 

LIKELIHOOD ESTIMATION 

#param is the seed for the optimization 

#n is the number of APs 

#k is the array of RSS readings recorded in the online stage 

#s is the training set 

LoL <-function(param,k,s,n) 

{ 

  d<-data.frame(x=param[1],y=param[2]) 

  m<-array(1:n) 

  se<-array(1:n) 

  TheS<-array(1:n) 

  TheSD<-array(1:n) 

  l<-array(1:n) 

  p<-0 

  for (i in 1:n){ 

    b1<-bestLoess(loess(s[i,]~x+y)) 

    b<-loess(s[i,]~x+y,span=b1$span) 

    m[i]<-predict(b,d,se=TRUE)$fit 
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    se[i]<-predict(b,d,se=TRUE)$se 

    TheS[i]<-loess(s[i,]~x+y)$s 

    TheSD[i]<-sqrt(se[i]^2 + TheS[i]^2) 

    l[i]<-log(dnorm(k[i],mean=m[i],sd=TheSD[i])) 

#log of the likelihood function 

    p<-p-l[i] 

#sum of the log likelihood functions 

  }  

  return(p)  

} 

MAXIMUM LIKELIHOOD FUNCTION 

MLE<-function(param,k,s...) 

{ 

  return(optim(param,LoL,s,k,...))  

} 

BOOTSTRAP FUNCTION 

bootsignal<-NULL 

#this for loop calculates 2000 training sets using the mean and sd of the original training set 

for(i in 1:n) 

{ 

  b1<-bestLoess(loess(s[i,]~x+y)) 

  b<-loess(s[i,]~x+y,span=b1$span) 

  a<-predict(b,se=TRUE) 
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  m<-a$fit 

  sd<-b$s 

  tp<-matrix(rnorm(length(m)*2000,mean=m,sd=sd),byrow=TRUE,nrow=2000) 

  bootsignal<-c(bootsignal,list(tp)) 

} 

#Here we are calculating the confidence intervals for 8 APs 

posn<-array(1:2000) 

for(bno in 1:2000) 

{   

    d<-array(1:864,dim=c(8,108)) 

    d[1,]<-bootsignal[[1]][bno,] 

    d[2,]<-bootsignal[[2]][bno,] 

    d[3,]<-bootsignal[[3]][bno,] 

    d[4,]<-bootsignal[[4]][bno,] 

    d[5,]<-bootsignal[[5]][bno,] 

    d[6,]<-bootsignal[[6]][bno,] 

    d[7,]<-bootsignal[[7]][bno,] 

    d[8,]<-bootsignal[[8]][bno,] 

    v<-optim(c(0,0),LoL,gr=NULL,k,d) 

} 

dposn<-array(1:2000) 

for(i in 1:2000) 

{ 
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  dposn[i]<-posn[[i]]$value 

} 

#calculate the lower and upper quantiles 

quantile(dposn,probs=c(0.025,0.5,0.975)) 
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